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1. Comparison of works

Table 1: Related regularization work. Let dimension of Hankel be n, system order be R and
number of samples be T . Error in suboptimal Hankel spectral norm comes from
naive matrix inequality of Frobenius norm.

Paper This work Cai et al. (2016)

Sample complexity for optimal Hankel spectral norm T = O(R2 log2 n)

Sample complexity for suboptimal Hankel spectral norm T = O(R log2 n) T = O(R log2 n)

Input Multiple rollout Multiple rollout

Error in impulse response Frobenius norm O(σ
√
n/T )

Error in optimal Hankel spectral norm O(σ
√
n/T )

Error in suboptimal Hankel spectral norm O(σ
√
n2/T ) O(σ

√
n2/T )

Table 2: Related least square work. Let dimension of Hankel be n, system order be R and
number of samples be T .

Paper This work Oymak and Ozay (2018) Sarkar et al. (2019)

Sample complexity T = O(n) T = O(n) T = O(n2)

Input Single rollout Single rollout Single rollout

Error in impulse response
Frobenius norm

O(σ
√
n/T ) O(σ

√
n/T )

Error in
Hankel spectral norm

O(σ
√
n/T ) O(σ

√
n2/T ) O(σ

√
n/T )

2. More experiments

First we generate synthetic data and compare the performance of Oymak and Ozay (2018)
and Sarkar et al. (2019) in Figure 1. We can see that, due to the constant overhead
O( 1

1−ρ
√
n/T ) in Sarkar et al. (2019) algorithm, the resulted error is larger than Oymak and

Ozay (2018). Figure 2 compares them in the setting when output noise exists and Oymak
and Ozay (2018) has smaller error as well.

In this subsection, we check Theorem 7 via synthetic experiments, and compare with
least square estimator. In the following experiment, we have a fixed strictly stable SISO
linear system with order 9, the Hankel size n is initiated as 20 which exceeds the order. The
input is multiple rollout, scaled i.i.d Gaussian, which means that we send in the input up to
time 2n− 1, and observe the output at the end as an observation, and restart the system.
The input satisfies that, after scaling by K−1, E(UTU) = I, which is the assumption in
Theorem 7. The observed output can be noiseless and noisy, and the numbers of observations
are 30 (undetermined for least square) and 60 (determined for least square).
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We tune the regularized model by training with different weight λ of regularization. To
tune the least square model, there are two ways: (1) fix the size of Hankel matrix, and
run Ho-Kalman algorithm with different rank truncation, or (2) change the size of Hankel
matrix. We pick the model associated with the smallest validation error at the end, and run
it on test set. The size of training, validation and test set is 1 : 3 : 6.

2.1. Noiseless, enough observations (Fig 3 and 4)

When the output is noiseless and T = 60, we can see that both regularized and least square
algorithms do well. When λ→ 0 in regularization or the size and rank tends to 20 in least
square method, it almost perfectly fit the model. The singular values of the estimated
Hankel is the same since it is perfect recovery.

2.2. Noisy, enough observations (Fig 5 and 6)

With enough data, when the output is noisy, both regularization and least square do the job
well. In Figure 5, we can see that in terms of validation error, there is a best weight λ and
Hankel size n, below and above which the validation error both grow. Then we can pick the
optimizer associated with those weight, size or rank as our estimation of the system.

2.3. Noiseless, not enough observations (Fig 7 and 8)

Without enough data for least square, even if the output is noiseless, least square is
underdetermined, even if we take the solution with the smallest 2 norm in impulse response,
it suffers big error on validation and test set. However, the error of regularization remains
small and as λ getting small, the error still tends 0. It indicates that, the solution with the
least Hankel nuclear norm behaves better than least impulse Frobenius norm in low sample
complexity case.

2.4. Noisy, not enough observations (Fig 9 and 10)

Finally not enough data and noisy. We can see that regularized algorithm is robust to noise,
where as least square algorithms remain bad.
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Figure 1: Comparison of (a) impulse Frobenius norm (b) Hankel spectral norm error when
output is noiseless between Oymak and Ozay (2018) and Sarkar et al. (2019) with
synthetic data. System is randomly generated with order 9 and Hankel H ∈ R9×9.
Single trajectory and input is i.i.d. Gaussian.
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Figure 2: Comparison of (a) impulse Frobenius norm (b) Hankel spectral norm error when
output SNR is 10 between Oymak and Ozay (2018) and Sarkar et al. (2019) with
synthetic data. System is randomly generated with order 9 and Hankel H ∈ R9×9.
Single trajectory and input is i.i.d. Gaussian.
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Figure 3: System estimation for synthetic data, noiseless, assuming n = 20. Training data
size = 60. (a) Training and validation error of different λ, (b) Training and
validation error of different Hankel size n. (c) Training and validation error of
different Hankel rank with same size n = 20.
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Figure 4: Synthetic, SNR = 10, training size is 60, singular value of (a) unregularized
Hankel before rank truncation (b) regularized Hankel.
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Figure 5: System estimation for synthetic data, SNR = 10, assuming n = 20. Training
data size = 60. (a) Training and validation error of different λ, (b) Training and
validation error of different Hankel size n. (c) Training and validation error of
different Hankel rank with same size n = 20.
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Figure 6: Synthetic, SNR = 10, training size is 60, singular value of (a) unregularized
Hankel before rank truncation (b) regularized Hankel.
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Figure 7: System estimation for synthetic data, noiseless, assuming n = 20. Training data
size = 30. (a) Training and validation error of different λ, (b) Training and
validation error of different Hankel size n. (c) Training and validation error of
different Hankel rank with same size n = 20.
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Figure 8: Synthetic, noiseless, training size is 30, singular value of (a) unregularized Hankel
before rank truncation (b) regularized Hankel.
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Figure 9: System estimation for synthetic data, SNR = 10, assuming n = 20. Training
data size = 30. (a) Training and validation error of different λ, (b) Training and
validation error of different Hankel size n. (c) Training and validation error of
different Hankel rank with same size n = 20.
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Figure 10: Synthetic, SNR = 10, training size is 30, singular value of (a) unregularized
Hankel before rank truncation (b) regularized Hankel.
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3. Proof of least square spectral norm error

Theorem 1 Denote the discrete Fourier transform matrix by F . Denote ξ(i) ∈ RT , i =

1, ...,m as the noise that corresponds to each dimension of output. The solution ĥ of

ĥ := h+ U †ξ = min
h′

1

2
‖Uh′ − y‖2F . (1)

obeys

‖ĥ− h‖F ≤ ‖ξ‖F /σmin(U)

‖H(ĥ− h)‖2 ≤
∥∥∥[‖FU †ξ(1)‖∞, ..., ‖FU †ξ(m)‖∞

]∥∥∥
2
.

Proof (1) has close form solution and we have ‖ĥ− h‖ = ‖U †ξ‖ ≤ ‖ξ‖/σmin(U). To get
the error bound in Hankel matrix, we can denote ξ̄ = U †ξ = (UTU)−1UT ξ, and

Hξ̄ =


ξ̄1 ξ̄2 ... ξ̄2n−1

ξ̄2 ξ̄3 ... ξ̄1

...
ξ̄2n−1 ξ̄1 ... ξ̄2n−2

 .
If m = 1, ξ̄ ∈ R(2n−1)p is a vector (Krahmer et al., 2014, Section 4) proves that

Hξ̄ = F−1diag(F ξ̄)F.

So the spectral norm error is bounded by ‖diag(F ξ̄)‖2 = ‖F ξ̄‖∞.
If m > 1, all columns of ξ are independent, so Hξ̄ can be seen as concatenation of m

independent noise matrices where each satisfies the previous derivation.

Theorem 2 Denote the solution to (1) as ĥ. Let U ∈ RT×(2n−1)p is multiple rollout input,
where every entry is i.i.d. Gaussian random variable, y be the corresponding output and ξ is
i.i.d. Gaussian matrix with each entry has mean 0 and variance σξ, then the spectral norm

error is ‖H(ĥ− h)‖ ∼ O(σξ

√
mnp
T log(np)).

Proof We use Theorem 1. First let m = 1. The covariance of F ξ̄ = FU †ξ is F (UTU)−1F T .
If T = Ω̃(n), it’s proven Vershynin (2018) that TI

2 � UTU � 3TI
2 then n

2T I � F (UTU)−1F T �
3n
2T I. So ‖F ξ̄‖∞ should scale as O(σξ

√
n
T log n). So ‖H(ξ̄)‖2 ≤ ‖Hξ̄‖2 ≤ ‖F ξ̄‖∞ =

O(σξ
√

n
T log n). If m > 1, then by concatenation we simply bound the specral norm

by m times MISO case. When m > 1, with previous discussion of concatenation, and each
submatrix to be concatenated has the same distribution, so the spectral norm error is at
most

√
m times larger.
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4. Gaussian width of nuclear norm tangent cone in MISO.

We consider recovering a MISO system impulse response. We first calculate the minimum
number of observations needed to recover the system regardless of noise rate, which is a
simple extension from SISO case in Cai et al. (2016). This can be seen as the sample
complexity requirement in noiseless case. For multi-rollout case, we only observe the output
at time 2N − 1, we have

y2N−1 =
2N−2∑
i=1

CA2N−2−iBui +Du2N−1. (2)

Denote the impulse response by h ∈ Rp(2N−1), which is a block vector

h =


h(1)

h(2)

...

h(2N−1)


where each block h(i) ∈ Rp. β ∈ Rp(2N−1) is a weighted version of h, with weights

Kj =

{ √
j, 1 ≤ j ≤ N√

2N − j, N < j ≤ 2N − 1

and

x(i) = Kih
(i)

Define the reweighted Hankel map for the same h by

G(β) =

β(1)/K1 β(2)/K2 β(3)/K3 ...

β(2)/K2 β(3)/K3 β(4)/K2 ...
...

T ∈ RN×pN

and G∗ is the adjoint of G. We define each rollout input u1, ..., u2N−1 as independent Gaussian
vectors with

ui ∼ N (0,K2
i I)

Now let U ∈ RT×p(2N−1), each entry is iid standard Gaussian. We consider the question

min
β

‖G(β)‖∗

s.t., ‖Uβ − y‖2 ≤ δ
(3)

where the norm of overall (state and output) noise is bounded by δ.

Theorem 3 Let β̂ be the true impulse response. If T = Ω((
√
pR log(N) + ε)2), C is some

constant, the solution β∗ to (3) satisfies ‖β̂ − β∗‖2 ≤ 2δ/ε with probability

1− exp

(
−1

2
(
√
T − 1− C(

√
pR log(N) + ε)− ε)2

)
.
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Let I(β) be the descent cone of ‖G(β)‖∗ at β, we have the following lemma:

Lemma 4 Assume

min
z∈I(β̂)

‖Uz‖2
‖z‖2

≥ ε,

then ‖β̂ − β∗‖2 ≤ 2δ/ε.

(Proof omitted) To prove Theorem 3, we only need lower bound LHS with Lemma 4. The
following lemma gives the probability that LHS is lower bounded.

Lemma 5 Define the Gaussian width

w(S) := Eg(sup
γ∈S

γT g) (4)

where g is standard Gaussian vector of size p. Let Φ = I(β̂) ∩ S where S is unit sphere. We
have

P (min
z∈Φ
‖Uz‖2 < ε) ≤ exp

(
−1

2
(
√
T − 1− w(Φ)− ε)2

)
. (5)

Now we need to study w(Φ).

Lemma 6 (Cai et al. (2016) eq. (17)) Let I∗(β) be the dual cone of I(β), then

w(Φ) ≤ E( min
γ∈I∗(β̂)

‖g − γ‖2). (6)

Note that I∗(β̂) is just the cone of subgradient of G(β̂), so it can be written as

I∗(β̂) = {G∗(V1V
T

2 +W )|V T
1 W = 0,WV2 = 0, ‖W‖2 ≤ 1}

where G(β̂) = V1ΣV T
2 is the SVD of G(β̂)1. So

min
γ∈I∗(x̂)

‖g − γ‖2 = min
λ,W
‖λG∗(V1V

T
2 +W )− g‖2.

For RHS, we have

‖λG∗(V1V
T

2 +W )− g‖2 = ‖λGG∗(V1V
T

2 +W )− G(g)‖F
= ‖λ(V1V

T
2 +W )− G(g)‖F + ‖λ(I − GG∗)(V1V

T
2 +W )‖F

≤ ‖λ(V1V
T

2 +W )− G(g)‖F .

Let PW be projection operator onto subspace spanned by W , i.e.,

{W |V T
1 W = 0,WV2 = 0}

1. For simplicity, we only write down real case. Complex case can be seen as a dimension increase by 2
times as in Cai et al. (2016).
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and PV be projection onto its orthogonal complement. Choose λ = ‖PW (G(g))‖2 and
W = PW (G(g))/λ.

‖λ(V1V
T

2 +W )− G(g)‖F = ‖G(g)− PW (G(g))− ‖PW (G(g))‖2V1V
T

2 ‖F
≤ ‖PV (G(g))− ‖PW (G(g))‖2V1V

T
2 ‖F

≤ ‖PV (G(g))‖F + ‖PW (G(g))‖2‖V1V
T

2 ‖F
= ‖PV (G(g))‖F +

√
R‖PW (G(g))‖2

= ‖PV (G(g))‖F +
√
R‖G(g)‖2.

Bound the first term by (note V1 and V2 span R dimensional space, so V1 ∈ RN×R and
V2 ∈ RpN×R)

‖PV (G(g))‖F = ‖V1V
T

1 G(g) + (I − V1V
T

1 )G(g)V2V
T

2 ‖F
≤ ‖V1V

T
1 G(g)‖F + ‖G(g)V2V

T
2 ‖F

≤ 2
√
R‖G(g)‖2.

we get

w(Φ) ≤ E(min
λ,W
‖λG∗(V1V

T
2 +W )− g‖2)

≤ E(‖λG∗(V1V
T

2 +W )− g‖2)
∣∣
λ=‖PW (G(g))‖2,W=PW (G(g))/λ

≤ 3
√
R‖G(g)‖2.

We know that, if p = 1, then E‖G(g)‖2 = O(log(N)). For general p, let

g(i) = [g
(i)
1 , ..., g(i)

p ]T ,

we rearrange the matrix as

Ḡ(g) =


 g

(1)
1 g

(2)
1 /
√

2 ...

g
(2)
1 /
√

2 g
(3)
1 /
√

3 ...
...


 g

(1)
2 g

(2)
2 /
√

2 ...

g
(2)
2 /
√

2 g
(3)
2 /
√

3 ...
...

 ...


= [G1, ..., Gp]

where expectation of operator norm of each block is log(N). Then (note v below also has a
block structure [v(1); ...; v(N)])

‖Ḡ(g)‖ = max
u,v

uT Ḡ(g)v

‖u‖‖v‖

= max
u,v1,...,vp

p∑
i=1

uTGiv
(i)

‖u‖‖v‖

≤ max
v1,...,vp

O(log(N))

∑p
i=1 ‖v(i)‖√∑p
i=1 ‖v(i)‖2

≤ O(
√
p log(N)).
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And ‖Ḡ(g)‖2 = ‖G(g)‖2. So we have ‖G(g)‖2 =
√
p log(N). So w(Φ) = C

√
pR log(N).

Get back to (5), we want the probability be smaller than 1, and we get

√
T − 1− C

√
pR logN − ε > 0

thus T = O((
√
pR log(n) + ε)2).

5. Proof of main theorem

Theorem 7 We study the problem

min
β̂

1

2
‖U β̂ − y‖2 + λ‖G(β̂)‖∗, (7)

in the MISO (multi-input single-output) setting (m=1, p inputs), where U ∈ RT×(2n−1)p.
Let β denote the (weighted) impulse response of the true system which has order R, i.e.,
rank(G(β)) = R, and let y = Uβ + ξ be the measured output, where ξ is the measurement
noise. Finally, denote the minimizer of (7) by β̂. Define

J (β) :=

{
v
∣∣ 〈v, ∂(

1

2
‖UTβ − y‖2 + λ‖G(β)‖∗)〉 ≤ 0

}
,

Γ := ‖I −UTU‖2,J (β),

J (β) is the tangent cone at β, and Γ is the spectral RSV. If Γ < 1, β̂ satisfies

‖G(β̂ − β)‖2 ≤
‖G(UT ξ)‖2 + λ

1− Γ
.

Proof Now we bound ‖G(β̂ − β)‖2 by partitioning it to ‖G(I − UTU)(β̂ − β)‖2 and
‖G(UTU(β̂ − β))‖2. We have

‖G(I −UTU)(β̂ − β)‖2 = ‖G(I −UTU)G∗G(β̂ − β)‖2
≤ ‖G(I −UTU)G∗‖2,GJ (β)‖G(β̂ − β)‖2
= Γ‖G(β̂ − β)‖2.

(8)

And then we also have

‖G(UTU(β̂ − β))‖2 = ‖GUT (U β̂ − y + ξ)‖2
≤ ‖GUT (U β̂ − y)‖2 + ‖G(UT ξ)‖2.

Since β̂ is the optimizer, we have

UT (U β̂ − y) + λG∗(V̂1V̂
T

2 + Ŵ ) = 0,

where G(β̂) = V̂1Σ̂V̂ T
2 is the SVD of G(β̂), Ŵ ∈ Rn×n where V̂ T

1 Ŵ = 0, Ŵ V̂2 = 0, ‖Ŵ‖2 ≤
1. Then

‖GUT (U β̂ − y)‖2 = λ‖GG∗(V̂1V̂
T

2 + Ŵ )‖2 ≤ λ. (9)
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Combine with (9), we have

‖G(UTU(β̂ − β))‖2 ≤ ‖G(UT ξ)‖2 + λ. (10)

Combining (8) and (10), we have

‖G(β̂ − β)‖2 ≤ ‖G(I −UTU)(β̂ − β)‖2 + ‖G(UTU(β̂ − β))‖2
≤ Γ‖G(β̂ − β)‖2 + ‖G(UT ξ)‖2 + λ

or equivalently,

‖G(β̂ − β)‖2 ≤
‖G(UT ξ)‖2 + λ

1− Γ
, Γ = ‖G(I −UTU)G∗‖2,GJ (β).

Bounding Γ. First we prove some side results for later use. From optimality of β̂, we have

1

2
‖y −U β̂‖2 + λ‖Gβ̂‖∗ ≤

1

2
‖y −Uβ‖2 + λ‖Gβ‖∗ =

1

2
‖ξ‖2 + λ‖Gβ‖∗

⇒ 1

2
‖Uβ + ξ −U β̂‖2 + λ‖Gβ̂‖∗ ≤

1

2
‖ξ‖2 + λ‖Gβ‖∗

⇒ 1

2
‖U(β − β̂)‖2 + ξTU(β − β̂) + λ‖Gβ̂‖∗ ≤ λ‖Gβ‖∗

⇒ λ‖Gβ̂‖∗ ≤ λ‖Gβ‖∗ + ξTU(β̂ − β)

⇒ ‖Gβ̂‖∗ − ‖Gβ‖∗ ≤
‖G(UT ξ)‖2

λ
‖G(β̂ − β)‖∗ (11)

(11) is an important result to note, and following that,

‖Gβ̂‖∗ − ‖Gβ‖∗ ≤
‖G(UT ξ)‖2

λ
‖G(β̂ − β)‖∗

⇒ 〈G(x̂− x), V1V
T

2 +W 〉 ≤ ‖G(UT ξ)‖2
λ

‖G(x̂− x)‖∗

⇒ ‖PWG(x̂− x)‖∗ ≤ −〈G(x̂− x), V1V
T

2 〉+
‖G(UT ξ)‖2

λ
‖G(x̂− x)‖∗

⇒ ‖PWG(x̂− x)‖∗ ≤ ‖PV G(x̂− x)‖∗ +
‖G(UT ξ)‖2

λ
(‖PV G(x̂− x)‖∗ + ‖PWG(x̂− x)‖∗)

⇒ ‖PWG(x̂− x)‖∗ ≤
1 + ‖G(UT ξ)‖2

λ

1− ‖G(UT ξ)‖2
λ

‖PV G(x̂− x)‖∗ (12)

Let U be iid Gaussian matrix with scaling E(UTU) = I. Here we need to study the
Gaussian width of the tangent cone w(J (β)) of (7). Banerjee et al. (2014) proves that, if
(11) is true, and λ ≥ 2‖G(UT ξ)‖2, then the Gaussian width of this set (intersecting with
unit ball) is less than 3 times of Gaussian width of {β̂ : ‖G(β̂)‖∗ ≤ ‖G(β)‖∗}, which is
O(
√
R log n) Cai et al. (2016).

A simple bound is that, let δ = β̂ − β, Γ can be replaced by

max ‖G((I −UTU)δ)‖2/‖G(δ)‖2

13
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subject to β̂ ∈ J (β). With (12), we have ‖PWG(δ)‖∗ ≤ 3‖PV G(δ)‖∗.
Denote σ = ‖G(δ)‖2, we know that σ ≥ max{‖PWG(δ)‖2, ‖PV G(δ)‖2} and ‖PV G(δ)‖2 ≥
‖PV G(δ)‖∗/(2R). And simple algebra gives that

max
0<σi<σ,

∑
i σ=S

∑
i

σ2
i ≤ Sσ.

So let σi be singular values of PV G(δ) or PWG(δ), and S = ‖PV G(δ)‖∗ or ‖PWG(δ)‖∗,

σ

‖PV G(δ)‖F
≥

√
‖PV G(δ)‖∗

2R‖PV G(δ)‖∗
≥
√

1/2R

σ

‖PWG(δ)‖F
≥

√
‖PV G(δ)‖∗

2R‖PWG(δ)‖∗
≥
√

1/6R

the second last inequality comes from (12). Thus if ‖(I −UTU)δ‖ = O(1/
√
R)‖δ‖, in other

words, ‖G((I −UTU)δ)‖F = O(1/
√
R)‖G(δ)‖F , whenever δ in tangent cone, we have

‖G((I −UTU)δ)‖2 ≤ ‖G((I −UTU)δ)‖F ≤ O(1/
√
R)‖G(δ)‖F ≤ ‖G(δ)‖2 (13)

so Γ < 1. To get this, we need
√
T/w(J (β)) = O(

√
R) where T = O(pR2 log2 n) (Vershynin,

2018, Thm 9.1.1), still not tight in R, but O(min{n,R2 log2 n}) is as good as Oymak and
Ozay (2018) and better than Sarkar et al. (2019), which are O(n) and O(n2) correspondingly.
(Vershynin, 2018, Thm 9.1.1) is a bound in expectation, but it naively turns into high
probability bound since Γ ≥ 0.

6. Bounding Γ, where do we lose?

The previous proof is not tight here.

‖G((I −UTU)δ)‖2 ≤ ‖G((I −UTU)δ)‖F︸ ︷︷ ︸
not tight

≤ O(1/
√
R)‖G(δ)‖F ≤ ‖G(δ)‖2 (14)

If we can show that, for all δ in the tangent cone (thus independent of U), ‖G((I −
UTU)δ)‖2 = O(1/

√
R)‖G((I − UTU)δ)‖F for U ∈ RO(R log2 n)×n, then we can get the

correct sample complexity. The difficulty is that, we do not know the distribution of
(I −UTU)δ. Let M = I −UTU and g := Mδ. Let g̃ be a Gaussian vector with same mean
and covariance as g that will be studied later. We know that gi =

∑
Mijδj . Let zij = UT:,iU:,j ,

14
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u, v denote standard Gaussian vectors of dimension T , we have (the last equation: i 6= j)

E((1− z2
ii)

2) = E((1− 1

T
uTu)2)

= 1− 2

T

T∑
i=1

E(u2
i ) +

1

T 2
(

T∑
i=1

E(u4
i ) +

T∑
i 6=j

E(u2
iu

2
j )) =

2

T
.

E(z2
ij) = E((

1

T
uT v)2)

=
1

T 2
E(
∑

u2
i v

2
i ) =

1

T
.

E(gi) = 0,

E(g2
i ) = E((

∑
Mijδj)

2)

= δ2
iE((1− z2

ii)
2) +

∑
j 6=i

δ2
jE(z2

ij) +
∑
j 6=k

δjδkE(MijMik)

≤ 1

T
(δ2
i + ‖δ‖2).

E(gigj) = E((
∑

Mikδk)(
∑

Mjlδl))

= δiδjE(MijMji)

=
1

T
δiδj .

So

Cov(g) =
1

T
(‖δ‖2I + δδT ).

The problem is that g is not Gaussian so even we know mean and variance it’s still hard

to deal with. Let’s study Gaussian first. If g̃ = g̃1 + ǧ2δ where g̃1 ∼ N (0, ‖δ‖
2

T I) and
ǧ2 ∼ N (0, 1/T ), then we have

E(‖G(g̃)‖2) ≤ E(‖G(g̃1)‖2) + E(|ǧ2|‖G(δ)‖2)

≤ 1√
T

(‖δ‖ log n√
n

+ ‖G(δ)‖2)

≤ 1√
T

(

√
R log n√
n︸ ︷︷ ︸

proven in paper

+1)‖G(δ)‖2

≤ 2√
T
‖G(δ)‖2.

If we have

P (‖G(g̃)‖2 > αE(‖G(g̃)‖2)) ≤ ψ(α),

then let α =
√
T/2, we have

P (‖G(g̃)‖2 > E(‖G(δ)‖2)) ≤ ψ(
√
T/2)
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We hope that ψ(α) = exp(−O(α2)) or log(ψ(α)) = −O(α2). Then with a set of Gaussian
width

√
R log n, we use a union bound and have (if we ignore the difference between g and

g̃)

P (max
δ
‖G(g)‖2 > ‖G(δ)‖2) ≤ ψ(

√
T/2) exp(O(R log2 n)) = exp(O(R log2 n) + log(ψ(

√
T/2))).

So if the derivation of a Gaussian vector can be applied to a non-Gaussian g = (I −UTU)δ
with the same mean and variance, and ‖G(g)‖2 is a subGaussian random variable, then we
can get the tight bound.
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